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SUMMARY

A systematic methodology of numerical stability is presented here in the study of numerical properties of mixed
Eulerian–Lagrangian schemes for the numerical simulation of non-linear free surface flows. Two different
numerical schemes, i.e. a source–doublet panel method and a desingularized method, are investigated. The
present work provides theoretical foundations and applications for numerical stability analysis theory. The
matrix stability method has been developed to obtain the spectral radii and normal modes associated with free
surface discretization. Some examples considered illustrate the usefulness of this analysis.# 1997 by John
Wiley & Sons, Ltd. Int. j. numer. methods fluids 24: 893–912, 1997.
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1. INTRODUCTION

Until recently, numerical methods for solving non-linear free surface flows have been dominated by
mixed Eulerian–Lagrangian formulations. These powerful methods, which play a major role in free
surface calculations, raise the stability issue owing to the discrete representation of free surface
elevation. In this study we present fundamental advances and insights into these methods and discuss
various numerical stability theories.

Ever since Longuet-Higgins and Cokelet1 encountered saw-tooth instabilities in their initial
application, numerical stability has gradually become a significant concern to investigators using the
mixed Eulerian–Lagrangian scheme with free surface problems. Numerical techniques such as
regriding, smoothing, filtering and artificial damping have been adopted by analysis and intuition to
surmount or reduce the instability. Several methods based on Fourier analysis have been developed
and applied. The principal methods include the popular von Neumann analysis,2 spectral analysis3

based upon the discrete dispersion relation obtained from the Fourier transform, and the matrix
method.4 Yeung2 and Dommermuthet al.5 applied a von Neumann analysis to give the stability
criteria f � kgDt2

=2 andDt2 4 �8=p�Dx=g respectively. HereDt andDx represent time step and
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mesh size respectively andg is gravitational acceleration. This approach assumed a particular
relationship between free surface normal velocities and velocity potentials based upon linear water
gravity waves, i.e.fz � kf. Nakoset al.6 extended the spectral analysis method3 to a transient free
surface flow around a constant Rankine source with a uniform speed. The comparison of the discrete
and continuous dispersion relations gave a systematic global error and stability criteria. Also included
in that work was the effect on stability due to an artificial absorption zone. Park and Troesch4

developed a matrix method to investigate the stability effects due to different numerical schemes, far-
field closure and Green’s function constant, thus proposing the free surface stability (FSS) number
given byFSS � pgDt2

=Dx. Park and Troesch4 also provided a comprehensive stability analysis with
various applications.

This paper extends the last model4 to investigate different mixed Eulerian–Lagrangian schemes,
such as Cao’s DBEM (desingularized boundary element methods)7–9 and Maskew’s USAERO=
FSP,10 as well as the effect of an artificial absorption device. The matrix method described in
Reference 4 is further developed to analyse the spectral radii and normal modes of the free surface
discretization used in developing the stability criteria, as well as to evaluate the effects of the
desingularized distance in the DBEM and the influence of artificial absorption zones. Additional
details and examples can be found in Reference 11.

It is noted that the stability analyses presented here are linearized theories which cannot fully
answer the non-linear free surface stability problems. This study, however, demonstrates that a linear
numerical stability analysis is useful for designing efficient and robust non-linear schemes.

2. THE MIXED EULERIAN–LAGRANGIAN SCHEME

Under the circumstances that we can justify the mathematical simplification and approximations, e.g.
constant fluid density, negligible viscous effects and no vorticity, the velocity field is represented
simply as the gradient of a scalar function, i.e. the velocity potential oru�x; t� � Hf�x; t�. The bold
characterx � �x; y; z� signifies the field vector with three co-ordinate components and hence the
irrotational flow of an incompressible, inviscid fluid is governed by the Laplace equation. An earth-
bound Cartesian co-ordinate system Oxyzis defined with its origin on the still water surface and itsz-
axis pointing upwards.

The boundary element method is claimed to have a speed and resolution advantage over finite
difference and classical finite element methods. These perceived advantages have led many
investigators to use the mixed Eulerian–Lagrangian scheme developed by Longuet-Higgins and
Cokelet1 when solving non-linear free surface problems. Longuet-Higgins and Cokelet1 derived a
two-step solution procedure divided into a Eulerian boundary element method (BEM) and a
Lagrangian finite difference scheme. The first step addresses a boundary value problem in the
Eulerian zone to obtain the velocity on the free surface, where the velocity potential and the co-
ordinates of marked particles at the free surface are provided at the previous time step. Then the
second step updates the velocity potential and the free surface by integrating the Lagrangian
formulations for the dynamic and kinematic free surface boundary conditions.

The boundary element method can be viewed as a singularity distribution method by performing
the following steps: first distribute some type of discretized singularities over some surfaceSs, called
the integration surface, around the boundaries of the fluid domain; then select a set of collocation
points, usually the same as the number of degrees of freedom of the singularity distribution, on the
boundariesSc, called the control surface; describe the boundary conditions at these collocation points
in the unknown strength of singularities; and finally solve the resulting closed set of equations for the
unknown strength, thus determining the potential and velocity everywhere in the domain.
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2.1. Desingularized source distribution

We first consider the desingularized method. Different from conventional BEM methods, the
desingularized boundary element method separates the integration and control surfaces with a proper
desingularized distance so that the singularities migrate outside the fluid domain and the collocation
points remain on the boundaries. Therefore the singularities and the collocation points no longer
coincide, which results in non-singular formulations. See Figure 1 for an example of tank sloshing.

Applying Green’s second identity to the velocity potential satisfying the Laplace equation yields a
Fredholm integral equation represented by

f�P� � ÿ

�

Ss

f�Q�

@G�P;Q�

@n
ÿ G�P;Q�

@f�Q�

@n

� �

ds; �1�

where G�P;Q� is the Green function,P is the field point with co-ordinatesxP � �x; y; z� on the
control surface andQ is the singularity point with co-ordinatesxQ � �x; Z; z� on the integration
surface.12,13 If all the boundary conditions are well posed, the uniqueness of the solution to the
integral equation is guaranteed.

Extending the domainO into O [ Oe and lettingf � fe ands�Q� � fn ÿ fen
produces another

integral equation expressed as

f�P� �

�

Ss

s�Q�G�P;Q� ds; �2�

wheres�Q� is the unknown strength of sources, which is determined by the boundary conditions. Any
solution to the Poisson equationDf � d�P;Q� can serve as the Green functionG�P;Q�. Both
Dirichlet and Neumann boundary conditions can be imposed upon equation (2). The solution
procedure is implemented numerically by discretizing the above equations, resulting in

f
d
�Pj� �

PNd

i�1
s�Qi�G�Pj;Qi� on Gd for j � 1; . . . ;Nd; �3�

@f
n
�Pj�

@n
�

PNd

i�1
s�Qi�

@G�Pj;Qi�

@n
on Gn for j � 1; . . . ;Nn; �4�

Figure 1. Source and control point distribution for sloshing tank, where bottom condition is satisfied by using image sources
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whereNd andNn are the numbers of collocation points on the Dirichlet and Neumann boundaries
respectively.

Cao7 suggested that the desingularization distance should be given by

d � ldDxv

; �5�

whereld is the desingularization factor reflecting the extent of desingularization,n is a parameter that
affects the accuracy of the numerical integration andDx is the local mesh size. His numerical
experiments7,8 showed that an appropriate value forn lies between 0 and 1 and a good choice for the
desingularization isn � 1

2. Cao7 also pointed out that the limit of the non-singular formulation is
consistent with the singular one and the desingularized integral equation is expected to have similar
properties to the singular integral equation.

An issue separate from stability considerations of the DBEM is matrix conditioning. Since in this
method the integral kernels are now non-singular, some degree of diagonal dominance has been lost,
yielding less well-conditioned matrices. Caoet al.8 have calculated a representative matrix condition
number as a function of the desingularized distance. The reader is referred to that work for a more
complete discussion.

2.2. Source and doublet singularity distribution

The source–doublet panel method is a three-dimensional non-linear time-stepping scheme
developed by Maskew10 for free surface problems associated with arbitrary multiple bodies in general
motion. This time-stepping surface singularity adopts quadrilateral panels by uniformly distributing
both source and doublet singularities on boundary surfaces of the problem. The surface integrals in
Green’s theorem are evaluated in a piecewise manner over each panel to form panel influence
coefficients. These evaluations are performed for each panel acting at the central control points on all
the surface panels, thus forming a matrix of influence coefficients. Usually the strengths of the
sources are determined by the local velocity components normal to the panel surfaces at the start of
each time step and then the strengths of the doublet are solved from the matrix equations. There is
also a provision to solve for the strengths of the sources when the strengths of the doublets are given.
Thus mixed boundary condition problems can also be treated.

Here we adopt the convention used in Reference 10. The fluid velocityV is the negative gradient of
the potential, i.e.V � ÿHF. In USAERO=FSP, all variables are normalized by certain reference
quantities; see Reference 10 for details. Different from the desingularized method, both source and
doublet singularities are directly distributed over the boundary surfaces of the fluid domain. We have
a singular point when the field pointP coincides with the source and doublet pointQ. The limiting
process as the singular point approaches a smooth boundary produces the local contributionf�P�=2,
thus yielding

PNb

k�1
mkCjk �

PN

k�1�Nb

skBjk � Ejk � 0 for j � 1; . . . ;N : �6�

On non-smooth boundaries the local contribution tof�P� is not scaled by12 but rather by the internal
angle divided by 2p or 4p depending upon whether the problem is two-dimensional or three-
dimensional. In this work, however, we exclude corners or non-smooth boundaries from the set of
singular points. It follows then for equation (6) that

Cjj � ÿ2p; Ejk �

PNb

k�1
skBjk �

PN

k�1�Nb

mkCjk
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andmk andsk are the doublet and source densities respectively on panelk. N is the total number of
active panels on all local wetted surfaces, including the free surface,Nf , and the hull configuration,
Nb. Cjk andBjk are the influence coefficients respectively for the uniform doublet and source on panel
k acting at the control point of panelj. See Reference 14 for the formulae ofCjk andBjk .

2.3. Artificial absorption devices

More recently, artificial absorption devices, which will be briefly described below, were contrived
to implement far-field closure. For the wave propagation problems with an unbounded domain the
computational domain has to be limited to a finite region by truncating the free surface at a certain
distance. The imposition of appropriate radiation boundary conditions can greatly reduce wave
reflections. An intuitive method for the imposition of radiation boundary conditions may be based on
Sommerfeld’s idea15 which slightly modifies the problem by adding a small damping term.

Numerous artificial damping systems have been devised to attempt at improving the mixed
Eulerian–Lagrangian scheme for free surface problems. Nakoset al.6 presented two linearized types
of artificial damping systems. However, their two models6 are designed toabsorbkinematic motion
instead of energy. A stability analysis for their absorption device may also be found in Reference 6.
Here we design an artificial energy absorption system for non-linear free surface models

Df
Dt

� ÿgz � 1
2Hf � Hfÿ nfn;

Dx
Dt

� Hf; �7�

where, for convenience,n�x� is non-negative and called theNewtonian coolingor friction
coefficient.16

Israeli and Orszag16 state that there exists anoptimumvalue of the cooling strength for maximum
wave absorption. We designed the absorption device defined by

n�x� �
0; 04 x4 x0;

n0f1 ÿ cos�p�x ÿ x0�=�L ÿ x0��g; x0 < x4 L;

(

�8�

where the cooling strengthn0 is suggested to lie between 0�1 and 0�3 by numerical simulations. The
stability analyses are given in Section 4.3.

3. NUMERICAL STABILITY THEORY

The stability concepts under discussion are properties of a particular linearized system that
presumably represents a non-linear model of free surface problems in terms of physical variables of
interest such as time step, mesh size, desingularized distance, damping coefficient and so on. The
question of stability is concerned with the examination of error growth while a numerical scheme is
being carried out. A basic issue involves the preservation of stability under a change in parameter
values. Since transient parameters (e.g. those associated with non-linear systems) change with time,
stability can be created or destroyed as the equations are integrated forwards. To circumvent the
difficulty of a non-linear stability analysis, we must limit our attention to approximate linear models.

Historically, von Neumann stability analysis has served as a basic tool for stability studies. Early
attempts at a stability criterion for the mixed Eulerian–Lagrangian scheme were largely based on this
method. The method’s chief attributes are its relative simplicity of implementation and its ability to
estimate stability characteristics of individual surface elements. The von Neumann analysis, however,
is only approximate since it does not include the effects of the boundaries. More recently the matrix
method4 and spectral analysis6 have been developed to overcome this shortcoming. If influences such
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as the effects of different boundary conditions on stability are desired, we are limited to the matrix
method, which is briefly described in the following paragraphs.

For a linear stability analysis we have the linearized free surface boundary conditions

Zt � fz and ft � ÿgZ on z � 0: �9�

Various difference approximations can be applied to the above equations. For instance, an explicit
Euler scheme generates

f
n�1

ÿ 2fn
� f

nÿ1
� ÿgDt2

f
nÿ1
z ; �10�

an implicit Euler scheme produces

f
n�1

ÿ 2fn
� f

nÿ1
� ÿgDt2

f
n�1
z �11�

and an E–I Euler scheme (implicit–explicit) yields

f
n�1

ÿ 2fn
� f

nÿ1
� ÿgDt2

f
n
z : �12�

For a simple case these above equations given by the three different schemes can be directly
investigated by von Neumann stability analysis. For a survey of various difference schemes one may
refer to Reference 2.

In general, assume a scheme to be of the form

C1 f n�1
j � C0 f n

j � C
ÿ1 f nÿ1

j � 0; �13�

where Ci; i � ÿ1; 0; 1, are finite difference operators andf n
j � f �xj; tn

� are discrete variables
described by the space discretizationxj and the time discretizationtn

� nDt, wheren is the integer
indicating the time step. A Fourier analysis of the solution to equation (13) provides the
representation

f n
j � Fn

�k�eik ? xj
; �14�

wherei �
p

�ÿ1� andk is the vector wave number. Substituting equation (14) into equation (13) and
dividing by the factorexp�ik ? xj� yields the vector equation

G1Fn�1
j � G0Fn

j � G
ÿ1Fnÿ1

j � 0: �15�

This three-level equation can be transformed into a two-level equation by introducing the auxiliary
unknownUn

� Fnÿ1. Then equation (15) becomes

G1Fn�1
j � G0Fn

j � G
ÿ1Un

j � 0; Un�1
j ÿ Fn

j � 0; �16�

which can be combined into

F
n�1

� GF
n
; �17�

whereF � �F;U� is a 2m-component vector andG is a 2m � 2m matrix consisting of the operators
of equations (16).

Stability of the scheme requires that the spectral radius of the amplification matrixG be not larger
than unity, i.e.

r�G� � max
i

jlij4 1; 04 kjDxj 4 2p; �18�

whereli are the eigenvalues ofG. These eigenvalues are the roots of the algebraic equation

det�G ÿ lI� � 0; �19�

whereI is the identity matrix.
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For the mixed Eulerian–Lagrangian scheme the linearized free surface boundary conditions
described by equations (9) can be represented in the discretization system

f

Z

� �n�1

� G
f

Z

� �n

�

0
f

� �n

; �20�

whereG is a2m � 2m matrix consisting of kinematic and dynamic free surface boundary conditions
and depends on the difference scheme adopted,m represents the number of sources distributed above
or over the free surface andf is an m-component forcing function column which plays no role in
stability analysis and will be omitted hereinafter. Similar to the formation of equations (10)–(12), the
explicit Euler scheme gives the matrixG

G �

I ÿgDtI
DtC* I

� �

; �21�

the implicit Euler scheme yields the matrixG

G �

I gDtI
ÿDtC* I

� �
ÿ1

�22�

and the E–I Euler scheme produces the matrixG

G �

I gDtI
0 I

� �
ÿ1

I 0
DtC* I

� �

; �23�

where the submatrixI is an m � m identity matrix and them � m submatrixC* results from the
influence coefficient matrix of the discretization system which is obtained from the Eulerian
boundary element method.

4. APPLICATION OF MATRIX STABILITY ANALYSIS

A linearized system representing non-linear free surface problems has a large number of parameters
of interest, which increases the complexity of a stability analysis. To circumvent this difficulty, we
limit our attention to a particular class of parameters. Through the use of several applications, the
usefulness of the stability analyses delineated previously is demonstrated.

4.1. Stability analysis for the desingularized method

The desingularized distance plays an important role in the numerical stability of this method. In
this subsection we first try to set up the stability criterion for the desingularized distance by using the
above stability analysis. For simplicity we consider a simple case with a unit source distributed above
the origin at a distanced and a field point located at the origin. By applying the E–I Euler scheme, the
necessary stability conditions for the desingularized distanced are given by the inequalities

ÿ44 gDt2
=d ln d 4 0 and ÿ 44 ÿ gDt2

=d 4 0 �24�

for two-dimensional and three-dimensional cases respectively; see Reference 11 for details.
Based upon the desingularized boundary element method, the discrete set of equations (3) and (4)

can be rewritten as

f
d

@f
n
=@n

� �

� C
sd

sn

� �

: �25�
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By deriving the Fredholm integral equation of the first kind from equations (1) and (2),12,13the above
system of equations can be further rewritten as

@f
d
=@n

@f
n
=@n

� �

� C0
sd

sn

� �

: �26�

Substituting equations (25) into equations (26) and withdrawing theNf -component subvector related
to the free surface from the above system yields

@f
d

@n

� �

Nf � C0

Nf�N Cÿ1
N�N

f
d

@f
n
=@n

� �

N

� C*ff
d
gNf

� ffgNf ;
�27�

whereNf is the number of sources distributed above the free surface andN is the total number of
sources.

The matrix method is of special interest because of its ability to investigate numerical stability
without extensive simplification. Here we will directly use the matrix method developed in Section 3
to study the numerical properties of the desingularized boundary element method. For the E–I Euler
scheme the matrixG takes the form

G �

I gDtI
0 I

� �
ÿ1

I 0
DtC* I

� �

: �28�

Here we use the above equation to investigate the sloshing of waves in a tank (L� 4 andH� 1), the
objective being to determine the stable ranges of desingularized distanced. Figure 2 provides the
numerical stability analysis for the 46 1 sloshing tank where the number of panels is equal to
40610610, Dx � 0�1 and Dt � 0�05; 0�1; 0�3 and 0�35. The stable ranges of desingularized
distanced are determined by the largest moduli of eigenvalues,jljmax versus ld, where the
desingularization factor is defined asld � d=Dx. Taking n � 1 in equation (5), we have that the
results provided in Figure 2 are in fair agreement with the numerical experiments provided by Cao.7

Furthermore, whenDt > 0�35, there is no stable range of desingularized distance for this certain
condition. Figure 3 shows the effect of desingularized distance on thenon-linear numerical
simulations of sloshing waves. The results show the free surface elevations at the midpoint of the
sloshing tank, whereld � 0�5 lies in the unstable range,ld � 1�05 is near the critical point and
ld � 3�0 is seated in the stable range. It should be pointed out that large mesh and time step sizes were
adopted to demonstrate the characteristics of numerical stability and hence some size effects in the
form of wave beating could be observed. Usually there are significant size effects on the larger-
amplitude case and insignificant size effects on the smaller-amplitude case. Here the non-
dimensionalization is achieved by takingg � 1 in the numerical simulation. Calculations were
performed on an HP735 workstation with single-precision accuracy.

From stability analysis we know that the E–I Euler scheme is conditionally neutrally stable and the
explicit Euler scheme is unconditionally unstable. Figure 4 gives examples that show the time step
effects on the explicit Euler scheme. Here the desingularized method with the explicit Euler scheme
andd � 3Dx, i.e. ld � 3, is applied to simulate the non-linear sloshing of waves over period without
using any regridding technique. The initial conditions are defined so that the free surface att � 0 is at
rest and takes a sinusoidal form as an initial wave elevation. Three different time steps, i.e.
Dt � 0�01; 0�1 and 0�2 with jljmax � 1�0018; 1�1629 and 1�5523 respectively, are adopted here to
demonstrate the time step effects on the numerical simulations of sloshing waves. The sloshing tank
used here is 461, as illustrated in Figure 5. Figure 4 also suggests that by careful selection of
numerical parameters such as time step and mesh size, schemes that are marginally unstable in a
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Figure 2. Stable range of desingularized distance (E–I Euler method)

Figure 3. Effect of desingularized distance on simulations of sloshing waves
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linear sense sometimes give satisfactory results for short-time non-linear simulations. This may help
explain the popularity of explicit methods in mixed non-linear E–I schemes.

Conservation of mass and energy plays a significant role in the stability of numerical schemes.
Figure 6 demonstrates the conservation of energy, including kinetic energy and potential energy,
where the theoretical total energy comes from the linear wave theory. Because this is a small-

Figure 4. Stability of sloshing wave elevation over one period

Figure 5. Schematic sloshing tank (461)
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amplitude sloshing wave, i.e.A � 0�02, the numerical result shows good agreement with the linear
theory. Figure 7 illustrates the time step effects on conservation of energy. This figure shows that a
large time step has significant effects on conservation of energy, where the numerical results are
normalized by total energy. To some extent both the E–I and explicit Euler schemes violate the

Figure 6. Energy (E) conservation (E–I Euler scheme,Dt � 0�01;Dx � 0�1; jljmax � 1�01�

Figure 7. Time step effects on energy (E) conservation

NUMERICAL STABILITY OF FREE SURFACE FLOWS 903

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 893–912 (1997)



conservation of energy for neutrally stable and marginally unstable conditions. Generally speaking,
the neutrally stable E–I Euler scheme is significantly better than the unstable explicit Euler scheme,
especially in long-time non-linear simulation.

4.2. Stability analysis for the source–doublet method

Here we apply the matrix method to the stability analysis for the source–doublet panel method.
Applying a simple Euler scheme to the kinematic boundary condition yields

xn�1
f � xn

f � Dtv; �29�

where thez-component ofxf , together with the square of the perturbation velocity, allows evaluation
of the gradient of the potential with respect to time from the Bernoulli equation

Df
Dt

�

1
2

Z

Fr2
ÿ v

2
� �

; �30�

whereFr is the Froude number given byVREF=
p

�gLREF�. Then applying a Euler scheme to the above
equation provides the new doublet distribution on the free surface for the next time step, i.e.

m
n�1

� m
n
�

1
4p
Dtf: �31�

It should be pointed out that the source–doublet panel method10 adopts an explicit Euler scheme at
the intersection point, an E–I Euler scheme at the far-field boundary and an average Euler scheme all
over the free surface by using a weight function related to the distance between the field point and the
intersection point.

Similar to the formation of equations (21)–(23), applying a different Euler schemes yields the
following equations. The explicit Euler scheme gives the matrixG

G �

I �Dt=8pFr2
�I

4pDtC* I

� �

; �32�

the implicit Euler scheme yields the matrixG

G �

I ÿ�Dt=8pFr2
�I

ÿ4pDtC* I

� �
ÿ1

�33�

and the E–I Euler scheme produces the matrixG

G �

I ÿ�Dt=8pFr2
�I

0 I

� �
ÿ1

I 0
4pDtC* I

� �

; �34�

where the submatrixI is anNf � Nf identity matrix and theNf � Nf submatrixC* results from the
matrix of influence coefficients calculated by the USAERO=FSP code.

To obtain the submatrixC*, rewriting equation (6) in matrix form yields

�C�fmg � �B�fsg � 0; �35�

where [C] and [B] are N � N matrices andfmg andfsg areN column vectors. HereN � Nf � Nb is
the total panel number. Equation (35) can be further rewritten as

fmg � ÿ�C�

ÿ1
�B�fsg � �A�fsg; �36�

where the matrix [A] is given by USAERO=FSP. Currently, USAERO=FSP has only one option to
output the matrix of influence coefficients, which is the direct solver. The solution provides the
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doublet values on the hull panels and the source values on the free surface panels. Thus equation (36)
gives

sNb

sNf

� �

�

A11 A12
A21 A22

� �
ÿ1

mNb

mNf

� �

�

C*11 C*12
C*21 C*

� �
mN b
mNf

� �

; �37�

where the submatrixC* is theNf � Nf matrix which gives

fsgNf
� �C*�fmgNf

: �38�

The dominant diagonal terms of the coefficient submatrixC* always have negative values. This
differs from when we use the desingularized method, where the dominant diagonal terms ofC*
always have positive values. This is because the notation used in the source–doublet panel method is
opposite from that adopted for the desingularized method.

The stability analyses of non-linear numerical simulations for cases of interest will be provided
next. First we study the stability characteristics of different Euler schemes for a flared body
undergoing forced sinusoidal vertical motion. The body geometry is shown in Figures 8 and 10.
Based on the conditions of experimental ‘Run 25’, i.e. frequencyf � 0�598 Hz and moderate
amplitudeA � 1�257 in (see Reference 11 where the complete experimental test matrix and results
are described), a numerical simulation was conducted by USAERO=FSP which sets up a pseudo-
axisymmetric condition where a segment of the body geometry and free surface is constructed with a
10� wedge angle. The code was instructed to perform an azimuthal sum of 36 identical strength
panels for each influence coefficient (see Figure 8). This treatment is to save computer time. For the
purpose of stability analysis, here equations (32)–(34) are used to investigate the deck wetness case,
experimental run 25, where the numbers of panels on the flared body and on the free surface are 12
and 28 respectively andDt � 0�01. The far-field open boundary was set at four body diameters away
from theZ-axis. The distribution of the 80 complex eigenvalues relative to the unit circle given in
Figure 9 shows that the explicit scheme is unstable wherejljmax � 1�00213456, the E–I scheme is
neutrally stable wherejljmax � 1�0 and the implicit scheme is stable wherejljmax � 0�999980092.
We have the same conclusion as that predicted in Reference 11 for the simple stability analysis.

The stability characteristics of free drop tests have also been investigated here. The free drop body
entry into initially calm water is described in Reference 11. The isometric view of the flared body is
shown in Figure 10; see Reference 11 for its offsets. Similar to above, a pseudo-axisymmetric

Figure 8. Co-ordinate systems and azimuthal segments
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condition is set up where a segment of the body geometry and free surface is constructed with a 10�

wedge angle. Figure 8 gives the details of the co-ordinate systems and azimuthal segments. Figure 11
demonstrates the time step size effect on the numerical simulations for the case of dropping height
h� 2 ft (0�61 m), where three different time step sizes are taken, i.e.Dt � 0�00102; 0�001531 and
0�003072 s. The vertical slamming coefficientCvs was defined in Reference 17 as

Cvs � 2m�z=rpL2V 2
0 ; �39�

wherem is the mass,�z is the vertical acceleration,r is the water density,L is a reference length equal
to the radius of the top circle of the cusped body, i.e. 7�8 in (19�8 cm), andV0 is the initial vertical
impact velocity described above. Other results are also presented in non-dimensional forms17 where
the vertical acceleration and velocity are normalized by the gravity accelerationg and V0

respectively. Time is non-dimensionalized byV0=2L. Bottom and flare impacts are highly non-linear
phenomena. The numerical simulation is very sensitive to the time step size, whose stable range is
very small. From Figure 11 we know that onlyDt � 0�001531 s yields reasonably good results. The
smallest time stepDt � 0�00102 s caused termination of the simulation too early owing to dispersion.
The largest time stepDt � 0�003072 shows the largest dissipative error, so that the simulation is also
forced to stop. In the simulations we took 22 panels on the body and 38 panels on the free surface.
Table I lists maximum moduli of eigenvalues for three different Euler schemes. WhenDt � 0�00102
and 0�001531 s, the maximum moduli of the eigenvalues of the implicit scheme are equal to unity

Figure 9. Eigenvalue distribution in complex plane, run 25
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instead of less than unity as we had seen before. This is because of round-off error for such small time
step sizes.

4.3. Effect of artificial damping

Artificial absorption devices were originally devised to provide improvements in minimizing wave
reflections, which has been discussed before. As an additional benefit, this design can also be used to
damp out the dispersive effect of numerical schemes. Israeli and Orszag16 pointed out that there
exists anoptimumvalue of the cooling strength for maximum wave absorption; nevertheless, how to

Figure 10. Schematic diagram of co-ordinate systems and geometry of body

Table I. Maximum moduli for free drop test withh� 2 ft

Time step size Explicit scheme E–I scheme Implicit scheme
Dt �s� jljmax jljmax jljmax

0�003067 1�00000262 1�0 0�999999940
0�001533 1�00000060 1�0 1�0
0�001022 1�00000024 1�0 1�0

Figure 11. Stability analysis of free drop test simulations (source–doublet method (USAERO=FSP),h � 2 ft)
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determine this optimum value is not straightforward. Nakoset al.6 attempted to use their spectral
stability analysis to investigate some absorption devices without giving specific values of Newtonian
cooling coefficients. In this subsection we will use the matrix method to determine ranges of the
Newtonian cooling strengthv0 for the purpose of numerical stability, thus bounding the optimum
value for the Newtonian cooling strength.

A linearizing artificial absorption system for the non-linear model given by equation (7) can be
expressed as

ft � ÿgz ÿ nfz; �40�

Zt � fz: �41�

Using the E–I Euler scheme yields the matrixG taking the form

G �

I �gDt � n�I
0 I

� �
ÿ1

I nI
DtC* I

� �

; �42�

where the Newtonian cooling is defined by

n�x� �

0; 04 x4 x0;

n0 1 ÿ cos p
x ÿ x0

L ÿ x0

� �� �

; x0 < x4L:

8
<

:
�43�

Figure 12. Eigenvalue distribution in complex plane
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This function and its first derivative have zero values atx � x0, thus minimizing the wave reflection
of the absorption device.

Figure 12 illustrates the eigenvalue distribution in the complex plane due to variation of the
Newtonian cooling strengthv0 from 0�0 to 0�3. The specific example is a tank with an absorber at one
end. The results tell us that the larger the Newtonian cooling strengthn0, the more influence over the
numerical system the artificial damping device has. However, whenn0 � 0�3, one of the eigenvalues
is greater than unity, thus predicting that the corresponding non-linear simulation may eventually be
spoiled by numerical instability. The overdamping effect not only does not stabilize the numerical
system but also causes the instability of the system. In summary, for the sloshing case considered, the
results of the cooling strength predicted by the matrix stability analysis lie between 0�0 and 0�3.

Numerical stability analyses were performed based on a 66 1 sloshing tank, i.e.L � 6 andH � 1,
where the number of panels is equal to 60610610,Dx � 0�1;Dt � 0�1 and the absorbing beach
starts atx0 � 4, i.e.4 < x4 6. The E–I Euler scheme given by equation (42) is applied to analyse the
stability. From Reference 11 we know that most of the normal modes have zero value over the
absorbing beach. From the node superposition principle, if those modes play a significant role in the
wave elevation, the absorption devices achieves the desired results. Figure 13 shows the comparison
of the normal modesZ between two different devices, i.e.n � n0f1 ÿ cos�p�x ÿ x0�=�L ÿ x0��g and
n � n0f1 � cos�p�x ÿ x0�=�L ÿ x0��g, where the latter and its first derivative have non-zero values at

Figure 13. Comparison between (a, b)n � n0f1 ÿ cos�p�x ÿ x0�=�L ÿ x0��g and (c, d)n � n0f1 � cos�p�x ÿ x0�=�L ÿ x0��g
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x � x0. Figure 13 shows that the latter device, i.e. (c) and (d), has high-wave-number modes
compared with the former device, i.e. (a) and (b). When short-wave modes play a major role in
determining the wave elevation, the result may be spoiled by numerical dispersion associated with
improperly selected absorption devices.

To further understand the mechanism of absorption devices, Figures 14 and 15 are used to illustrate
the artificial damping effect on simulations of sloshing waves which correspond to the four cases
shown in Figure 12, i.e.n0 � 0�0; 0�1; 0�2 and 0�3. The numerical simulations provided in Figures 14
and 15 show good agreement with Figure 12, where the casen0 � 0�3 shows that the simulation
finally stopped at the time equal to 88 owing to overdamping and the associated numerical instability.
This example strongly suggests that when we design an absorption device, we have to be careful not
to unknowingly overdamp.

5. CONCLUSIONS

This research presents a systematic methodology of numerical stability for the study of numerical
properties of mixed Eulerian–Lagrangian schemes for the numerical simulation of non-linear free
surface flows. Two different numerical schemes, i.e. a source–doublet panel method and a
desingularized method, are investigated. The matrix stability method is applied in establishing
stability criteria as well as evaluating the effects of the desingularized distance and the artificial

Figure 14. Artificial damping effect on simulations of sloshing waves
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absorption device, thus expounding the role stability analysis plays in the success of the numerical
method, remedying its shortcomings and extending its applicability. Examples considered illustrate
the usefulness of this stability analysis. This study shows that the neutrally stable scheme or the
weakly dissipative scheme is ideal in long-time simulations of non-linear free surface problems.
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